Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jia-Ning Xu, Jin-Peng Zhang, Qian Wang, Xiao-Tong Zhu and Shu-Jiang Tu*

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: laotu2001@263.net

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.037$
$w R$ factor $=0.091$
Data-to-parameter ratio $=12.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

9-(4-Bromophenyl)-3,3,6,6-tetramethyl-3,4,5,6,9,10-hexahydroacridine-1,8(2H,7H)-dione

The title compound, $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{BrNO}_{2}$, was synthesized by the reaction of 4-bromobenzaldehyde with dimedone and ammonium acetate under microwave irradiation. In the molecule, the dihydropyridine ring adopts a slight boat conformation.

Comment

Acridine derivatives, with their interesting chemical and physical properties, have immense utility in the pharmaceutical and dyeing industries, and are well known therapeutic agents (Wysocka-Skrzela \& Ledochowski, 1976; Nasim \& Brychey, 1979; Thull \& Testa, 1994). The discovery of acridines as antimalarial and antitumor agents has attracted the attention of organic chemists and thus led to intensive interest in the synthesis of several drugs based on acridine (Khurana et al., 1990; Matsumoto et al., 1983), We report here the crystal structure of the title compound, (I).

(I)

The dihydropyridine ring in (I) is in a slight boat conformation, with atoms N 1 and C 9 deviating from the $\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 10 /$ C11 mean plane by 0.077 (3) and 0.150 (3) \AA, respectively (Fig. 1). Both cyclohexene rings adopt sofa conformations: atom C 3 deviaties from the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8$ by 0.617 (3) \AA and atom C 13 deviates from the $\mathrm{C} 10 / \mathrm{C} 11 / \mathrm{C} 12 / \mathrm{C} 16 / \mathrm{C} 17$ plane by 0.651 (3) \AA. The dihedral angle between the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 6 / \mathrm{C} 7 /$ C 8 and $\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 10 / \mathrm{C} 11$ planes is 2.61 (7) ${ }^{\circ}$ and that between the $\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 10 / \mathrm{C} 11$ and $\mathrm{C} 10 / \mathrm{C} 11 / \mathrm{C} 12 / \mathrm{C} 16 / \mathrm{C} 17$ planes is 7.55 (7) ${ }^{\circ}$. In the crystal structure, molecules are linked via $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming one-dimensional chains in the a-axis direction (Table 1 and Fig. 2).

Experimental

The title compound was prepared by the reaction of 4-bromobenzaldehyde (1 mmol) with dimedone (2 mmol) and ammonium acetate (1 mmol) under microwave irradiation (yield 93%; m.p. >574 K). Single crystals suitable for X-ray diffraction were obtained by slow evaportation of (I) of an ethanol solution.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{BrNO}_{2}$
$M_{r}=428.36$
Orthorhombic, Pna2 $_{1}$
$a=14.1598$ (16) \AA
$b=14.0629$ (16) A
$c=10.8624$ (12) \AA
$V=2163.0$ (4) \AA^{3}
$Z=4$
$D_{x}=1.315 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.610, T_{\text {max }}=0.736$
11747 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.091$
$S=1.00$
3083 reflections
252 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation
Cell parameters from 2822
reflections
$\theta=2.8-23.0^{\circ}$
$\mu=1.92 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, yellow
$0.26 \times 0.20 \times 0.16 \mathrm{~mm}$

3083 independent reflections
2016 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-17 \rightarrow 17$
$k=-16 \rightarrow 17$
$l=-13 \rightarrow 6$

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0196 P)^{2}\right. \\
&\quad+1.345 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.42 \mathrm{e}_{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-0.54 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \quad 750 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.003(13)
\end{aligned} \text { ? }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\left(\AA{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{2}$	$0.87(3)$	$1.88(2)$	$2.726(4)$	$165(4)$

Symmetry code: (i) $x-\frac{1}{2},-y+\frac{3}{2}, z$.
H atoms bonded to C atoms were placed in geometrically idealized positions ($\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$) and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms. The H atom bonded to N 1 was refined isotropically.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

We thank the Natural Science Foundation of China (No. 20372057), the Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Suzhou University Open Foundation (No. JSK011) and the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province (No. 01AXL 14).

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
View (Spek, 2003) of the hydrogen-bonded (dashed lines) chain in (I).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Khurana, J. M., Maikap, G. C. \& Mehta, S. (1990). Synthesis, pp. 731-732.
Matsumoto, H., Arai, T., Takahashi, M., Ashizawa, T., Nakano, T. \& Nagai, Y. (1983). Bull. Chem. Soc. Jpn, 56, 3009-3014.

Nasim, A. \& Brychey, T. (1979). Mutat. Res. 65, 261-288.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Thull, U. \& Testa, B. (1994). Biochem. Pharmacol. 47, 2307-2310.
Wysocka-Skrzela, B. \& Ledochowski, A. (1976). Rocz. Chem. 50, 127-131.

